Application of analytical hierarchy process for selecting an interior window blind

Jalilzadehazhari, E; Johansson, P; Johansson, J and Mahapatra, K (2017) Application of analytical hierarchy process for selecting an interior window blind. Architectural Engineering and Design Management, 13(4), pp. 308-324. ISSN 1745-2007

Abstract

Window blinds have a substantial role in shaping the energy consumption and improving thermal comfort and visual comfort. However, difficulties in selecting a window blind remain, due to existence of potential conflicts between visual, thermal, energy and life cycle cost. To overcome this problem, this study evaluates the performance of interior blinds, including venetian with slat of 0° and 45°, roller and double-pleated blinds with respect to visual, thermal, energy and life cycle cost. Later, the Analytical hierarchy process (AHP) is used for selecting the best blind based on trade-off among the visual, thermal, energy and life cycle cost. In using AHP, visual comfort is determined as most important objective with a weight of 52%. The results show that venetian blind (VB) with slat of 0° drawn 100% is the trade-off blind. Accomplishing the sensitivity analysis on blinds' global weight shows that VB with slat of 0° drawn 100% remains the trade-off blind until the weight of energy and life cycle cost is below 37% and 57%, respectively, and the weight of visual comfort is above 4%. However, changing thermal comfort weight has no impact on ranking of the blinds. This study shows the capability of AHP in managing the conflicts.Window blinds have a substantial role in shaping the energy consumption and improving thermal comfort and visual comfort. However, difficulties in selecting a window blind remain, due to existence of potential conflicts between visual, thermal, energy and life cycle cost. To overcome this problem, this study evaluates the performance of interior blinds, including venetian with slat of 0° and 45°, roller and double-pleated blinds with respect to visual, thermal, energy and life cycle cost. Later, the Analytical hierarchy process (AHP) is used for selecting the best blind based on trade-off among the visual, thermal, energy and life cycle cost. In using AHP, visual comfort is determined as most important objective with a weight of 52%. The results show that venetian blind (VB) with slat of 0° drawn 100% is the trade-off blind. Accomplishing the sensitivity analysis on blinds' global weight shows that VB with slat of 0° drawn 100% remains the trade-off blind until the weight of energy and life cycle cost is below 37% and 57%, respectively, and the weight of visual comfort is above 4%. However, changing thermal comfort weight has no impact on ranking of the blinds. This study shows the capability of AHP in managing the conflicts.Window blinds have a substantial role in shaping the energy consumption and improving thermal comfort and visual comfort. However, difficulties in selecting a window blind remain, due to existence of potential conflicts between visual, thermal, energy and life cycle cost. To overcome this problem, this study evaluates the performance of interior blinds, including venetian with slat of 0° and 45°, roller and double-pleated blinds with respect to visual, thermal, energy and life cycle cost. Later, the Analytical hierarchy process (AHP) is used for selecting the best blind based on trade-off among the visual, thermal, energy and life cycle cost. In using AHP, visual comfort is determined as most important objective with a weight of 52%. The results show that venetian blind (VB) with slat of 0° drawn 100% is the trade-off blind. Accomplishing the sensitivity analysis on blinds' global weight shows that VB with slat of 0° drawn 100% remains the trade-off blind until the weight of energy and life cycle cost is below 37% and 57%, respectively, and the weight of visual comfort is above 4%. However, changing thermal comfort weight has no impact on ranking of the blinds. This study shows the capability of AHP in managing the conflicts.

Item Type: Article
Uncontrolled Keywords: analytical hierarchy process; life cycle cost; visual comfort; thermal comfort; energy consumption; interior window blinds; economic models; sensitivity analysis; energy use; analytic hierarchy process; conflicts; life cycle costs; energy; tradeoffs; life cycle engineering; cost analysis; blinds; life cycles
Date Deposited: 11 Apr 2025 12:10
Last Modified: 11 Apr 2025 12:10