Revisiting thermal comfort models in Iranian classrooms during the warm season

Haddad, S; Osmond, P and King, S (2017) Revisiting thermal comfort models in Iranian classrooms during the warm season. Building Research & Information, 45(4), pp. 457-473. ISSN 0961-3218

Abstract

The validity of existing thermal comfort models is examined for upper primary school children in classroom settings. This is of importance to enhance productivity in the learning environment and to improve the control of artificial heating and cooling, including the potential for energy savings. To examine the thermal perceptions of children aged 10-12 years in non-air-conditioned classrooms, three sets of field experiments were conducted in boys' and girls' primary schools in Shiraz, Iran. These were undertaken during regular class sessions covering cool and warm conditions of the school year, polling responses from 1605 students. This paper illustrates the overall methods and reports the results of the warm season field survey (N=811). This investigation suggests that predicted mean vote-predicted percentage of dissatisfied (PMV/PPD) underestimates children's actual thermal sensation and percentage dissatisfied in the investigated classrooms. The analysis shows that sampled children may be slightly less sensitive to indoor temperature change than adults. The upper acceptable temperature derived from children's responses corresponding to mean thermal sensations of +0.85 is 26.5 degrees C, which is about 1 degrees C lower than the ASHRAE upper 80% acceptability limit. This implies that sampled children feel comfortable at lower temperatures than predicted by the ASHRAE Adaptive model during the warm season.;The validity of existing thermal comfort models is examined for upper primary school children in classroom settings. This is of importance to enhance productivity in the learning environment and to improve the control of artificial heating and cooling, including the potential for energy savings. To examine the thermal perceptions of children aged 10-12 years in non-air-conditioned classrooms, three sets of field experiments were conducted in boys' and girls' primary schools in Shiraz, Iran. These were undertaken during regular class sessions covering cool and warm conditions of the school year, polling responses from 1605 students. This paper illustrates the overall methods and reports the results of the warm season field survey (N = 811). This investigation suggests that predicted mean vote-predicted percentage of dissatisfied (PMV/PPD) underestimates children's actual thermal sensation and percentage dissatisfied in the investigated classrooms. The analysis shows that sampled children may be slightly less sensitive to indoor temperature change than adults. The upper acceptable temperature derived from children's responses corresponding to mean thermal sensations of +0.85 is 26.5°C, which is about 1°C lower than the ASHRAE upper 80% acceptability limit. This implies that sampled children feel comfortable at lower temperatures than predicted by the ASHRAE Adaptive model during the warm season.;The validity of existing thermal comfort models is examined for upper primary school children in classroom settings. This is of importance to enhance productivity in the learning environment and to improve the control of artificial heating and cooling, including the potential for energy savings. To examine the thermal perceptions of children aged 10-12 years in non-air-conditioned classrooms, three sets of field experiments were conducted in boys' and girls' primary schools in Shiraz, Iran. These were undertaken during regular class sessions covering cool and warm conditions of the school year, polling responses from 1605 students. This paper illustrates the overall methods and reports the results of the warm season field survey (N = 811). This investigation suggests that predicted mean vote-predicted percentage of dissatisfied (PMV/PPD) underestimates children's actual thermal sensation and percentage dissatisfied in the investigated classrooms. The analysis shows that sampled children may be slightly less sensitive to indoor temperature change than adults. The upper acceptable temperature derived from children's responses corresponding to mean thermal sensations of +0.85 is 26.5°C, which is about 1°C lower than t e ASHRAE upper 80% acceptability limit. This implies that sampled children feel comfortable at lower temperatures than predicted by the ASHRAE Adaptive model during the warm season.;

Item Type: Article
Uncontrolled Keywords: school buildings; thermal acceptability; school classrooms; children; adaptive comfort; pmv-ppd; thermal sensation; thermal comfort; performance; primary-school children; exercise; perception; responses; construction & building technology; preferences; sensation; summer; secondary schoolchildren; buildings; temperature; energy conservation; field tests; adults; air conditioners; schools; classrooms; girls; acceptability; children & youth
Date Deposited: 11 Apr 2025 14:09
Last Modified: 11 Apr 2025 14:09