A holistic model of emergency evacuations in large, complex, public occupancy buildings

Bateman, G L (2021) A holistic model of emergency evacuations in large, complex, public occupancy buildings. Unpublished PhD thesis, Imperial College London, UK.

Abstract

Evacuations are crucial for ensuring the safety of building occupants in the event of an emergency. In large, complex, public occupancy buildings (LCPOBs) these procedures are significantly more complex than the simple withdrawal of people from a building. This thesis has developed a novel, holistic, theoretical model of emergency evacuations in LCPOBs inspired by systems safety theory. LCPOBs are integral components of complex socio-technical systems, and therefore the model describes emergency evacuations as control actions initiated in order to return the building from an unsafe state to a safe state where occupants are not at risk of harm. The emergency evacuation process itself is comprised of four aspects - the movement (of building occupants), planning and management, environmental features, and evacuee behaviour. To demonstrate its utility and applicability, the model has been employed to examine various aspects of evacuation procedures in two example LCPOBs - airport terminals, and sports stadiums. The types of emergency events initiating evacuations in these buildings were identified through a novel hazard analysis procedure, which utilised online news articles to create events databases of previous evacuations. Security and terrorism events, false alarms, and fires were found to be the most common cause of evacuations in these buildings. The management of evacuations was explored through model-based systems engineering techniques, which identified the communication methods and responsibilities of staff members managing these events. Social media posts for an active shooting event were analysed using qualitative and machine learning methods to determine their utility for situational awareness. This data source is likely not informative for this purpose, as few posts detail occupant behaviours. Finally, an experimental study on pedestrian dynamics with movement devices was conducted, which determined that walking speeds during evacuations were unaffected by evacuees dragging luggage, but those pushing pushchairs and wheelchairs will walk significantly slower.

Item Type: Thesis (Doctoral)
Thesis advisor: Majumdar, A
Uncontrolled Keywords: security; systems engineering; airport; occupancy; communication; learning; safety; machine learning; evacuation
Date Deposited: 16 Apr 2025 19:36
Last Modified: 16 Apr 2025 19:36