A modular framework for performance-based durability engineering

Flint, M M (2014) A modular framework for performance-based durability engineering. Unpublished PhD thesis, Stanford University, USA.

Abstract

This dissertation lays the foundation for performance-based assessment of structural durability, and demonstrates the possibility and value of integrating multi-disciplinary research to support the design of sustainable infrastructure. The design and renewal of sustainable and resilient infrastructure pose challenges to managers operating under funding constraints and changing use and climate conditions. An approach to durability design that predicts quantitative sustainability metrics, considers uncertainty, and incorporates long-term socioeconomic and climate changes, is desirable and not currently available. A proposed framework for performance-based durability engineering (PBDE) has these desired features. The proposed PBDE framework assesses structural durability in three analysis stages: (1) exposure, (2) deterioration and repair, and (3) impact. Corrosion in reinforced concrete coastal structures has been selected as the case study deterioration mechanism. This dissertation develops the PBDE framework, evaluates the PBDE methodology against an existing probabilistic methodology, assesses the sensitivity of deterioration predictions and decision-support information to a variety of sources of uncertainty, and illustrates PBDE's use in informing infrastructure management decision-making. Advantages of the proposed framework include the incorporation of uncertainty in climate change, the ability to deaggregate sources of uncertainty and to update results to reflect new information, and the facilitation of sensitivity assessment. Additional research motivated by PBDE's development identifies the high sensitivity of a fully-coupled numerical heat and mass transport model to short-term fluctuations in surface boundary conditions, and this sensitivity's down-stream implications in predicting greenhouse gas emissions related to structural deterioration. Areas of future research to fully realize PBDE's potential in practice are discussed.

Item Type: Thesis (Doctoral)
Thesis advisor: Billington, S L; Baker, J W and Lepech, M
Uncontrolled Keywords: durability; multi-disciplinary; sustainability; uncertainty; reinforced concrete; climate change; corrosion; deterioration; funding; infrastructure management; renewal; case study
Date Deposited: 16 Apr 2025 19:31
Last Modified: 16 Apr 2025 19:31