Evaluation of data processing and artifact removal approaches used for physiological signals captured using wearable sensing devices during construction tasks

Anwer, S; Li, H; Antwi-Afari, M F; Mirza, A M; Rahman, M A; Mehmood, I; Guo, R and Wong, A Y L (2024) Evaluation of data processing and artifact removal approaches used for physiological signals captured using wearable sensing devices during construction tasks. Journal of Construction Engineering and Management, 150(1), ISSN 0733-9364

Abstract

Wearable sensing devices (WSDs) have enormous promise for monitoring construction worker safety. They can track workers and send safety-related information in real time, allowing for more effective and preventative decision making. WSDs are particularly useful on construction sites since they can track workers' health, safety, and activity levels, among other metrics that could help optimize their daily tasks. WSDs may also assist workers in recognizing health-related safety risks (such as physical fatigue) and taking appropriate action to mitigate them. The data produced by these WSDs, however, is highly noisy and contaminated with artifacts that could have been introduced by the surroundings, the experimental apparatus, or the subject's physiological state. These artifacts are very strong and frequently found during field experiments. So, when there is a lot of artifacts, the signal quality drops. Recently, artifacts removal has been greatly enhanced by developments in signal processing, which has vastly enhanced the performance. Thus, the proposed review aimed to provide an in-depth analysis of the approaches currently used to analyze data and remove artifacts from physiological signals obtained via WSDs during construction-related tasks. First, this study provides an overview of the physiological signals that are likely to be recorded from construction workers to monitor their health and safety. Second, this review identifies the most prevalent artifacts that have the most detrimental effect on the utility of the signals. Third, a comprehensive review of existing artifact-removal approaches were presented. Fourth, each identified artifact detection and removal approach was analyzed for its strengths and weaknesses. Finally, in conclusion, this review provides a few suggestions for future research for improving the quality of captured physiological signals for monitoring the health and safety of construction workers using artifact removal approaches.

Item Type: Article
Uncontrolled Keywords: artifact eradication; construction health; construction safety; digital construction; noise removal; physiological signals; sensing devices
Date Deposited: 11 Apr 2025 19:50
Last Modified: 11 Apr 2025 19:50