Critical sequence crashing heuristic for resource-constrained discrete time-cost trade-off problem

Sonmez, R; Iranagh, M A and Uysal, F (2016) Critical sequence crashing heuristic for resource-constrained discrete time-cost trade-off problem. Journal of Construction Engineering and Management, 142(3), ISSN 0733-9364

Abstract

Despite the importance of project deadlines and resource constraints in construction scheduling, very little success has been achieved in solving the resource-constrained discrete time-cost trade-off problem (RCDTCTP), especially for large-scale projects. In this paper a new heuristic method is designed and developed to achieve fast and high-quality solutions for the large-scale RCDTCTP. The proposed method is based on the novel principles to enable effective exploration of the search space through adequate selection of the activities to be crashed for a resource constrained schedule, by only crashing the activities with zero float in a resource constrained-schedule, which form the critical sequence. The computational experiment results reveal that the new critical sequence crashing heuristic outperforms the state-of-the-art methods, both in terms of the solution quality concerning project cost and computation time. Solutions with a deviation of 0.25% from the best known solutions are achieved within seconds for the first time, for a large-scale project including up to 2,000 activities. The main contribution of the new heuristic to practitioners and researchers is that it provides a fast and effective method for optimal scheduling of real-life-size construction projects with project deadlines and resource constraints.

Item Type: Article
Uncontrolled Keywords: construction planning; cost and schedule; costs; optimization; project management; resource management; scheduling
Date Deposited: 11 Apr 2025 19:46
Last Modified: 11 Apr 2025 19:46