Du, Q; Qi, X; Zou, P X W and Zhang, Y (2024) Bi-objective optimization framework for prefabricated construction service combination selection using genetic simulated annealing algorithm. Engineering, Construction and Architectural Management, 31(10), pp. 3921-3945. ISSN 0969-9988
Abstract
Purpose: The purpose of this paper is to develop a bi-objective optimization framework to select prefabricated construction service composition. An improved algorithm-genetic simulated annealing algorithm (GSA) is employed to demonstrate the application of the framework. Design/methodology/approach: The weighted aggregate multi-dimensional collaborative relationship is used to quantitatively evaluate the synergistic effect. The quality of service is measured using the same method. The research proposed a service combination selection framework of prefabricated construction that comprehensively considers the quality of service and synergistic effect. The framework is demonstrated by using a GSA that can accept poor solutions with a certain probability. Furthermore, GSA is compared with the genetic algorithm (GA), simulated annealing algorithm (SA) and particle swarm optimization algorithm (PSO) to validate the performance. Findings: The results indicated that GSA has the largest optimal fitness value and synergistic effect compared with other algorithms, and the convergence time and convergence iteration of the improved algorithm are generally at a low level. Originality/value: The contribution of this study is that the proposed framework enables project managers to clarify the interactions of the prefabricated construction process and provides guidance for project collaborative management. In addition, GSA helps to improve the probability of successful collaboration between potential partners, therefore enhancing client satisfaction.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | genetic simulated annealing algorithm; prefabricated construction service; quality of service; synergistic effect |
Date Deposited: | 11 Apr 2025 15:13 |
Last Modified: | 11 Apr 2025 15:13 |